Вариант № 64152

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 3:30:00
1
Задание № 334
i

Если 16% не­ко­то­ро­го числа равны 24, то 60% этого числа равны:



2
Задание № 517
i

Ре­ши­те не­ра­вен­ство | минус x|\geqslant4.



3
Задание № 877
i

Точки A, B, C раз­де­ли­ли окруж­ность так, что гра­дус­ные меры дуг AB, BC, CA в ука­зан­ном по­ряд­ке на­хо­дят­ся в от­но­ше­нии 9 : 5 : 4. Най­ди­те гра­дус­ную меру угла ABC.



4
Задание № 16
i

Плос­кость, уда­лен­ная от цен­тра сферы на 8 см, пе­ре­се­ка­ет ее по окруж­но­сти дли­ной 12π см. Най­ди­те пло­щадь сферы.



5
Задание № 1190
i

Вы­чис­ли­те  ло­га­рифм по ос­но­ва­нию дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби левая круг­лая скоб­ка 2 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 32 конец ар­гу­мен­та пра­вая круг­лая скоб­ка .



6
Задание № 375
i

Ко­ли­че­ство целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс 4x минус 20, зна­ме­на­тель: левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка в квад­ра­те конец дроби боль­ше 0 на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус 6;7 пра­вая квад­рат­ная скоб­ка равно:



7
Задание № 706
i

Рас­по­ло­жи­те числа 26 в сте­пе­ни левая круг­лая скоб­ка 9 пра­вая круг­лая скоб­ка , 3 в сте­пе­ни левая круг­лая скоб­ка 27 пра­вая круг­лая скоб­ка , 125 в сте­пе­ни 6 в по­ряд­ке воз­рас­та­ния.



8
Задание № 1941
i

Опре­де­ли­те, на сколь­ко не­из­вест­ное умень­ша­е­мое боль­ше вы­чи­та­е­мо­го, если из­вест­но, что x минус 10 = 30.



9
Задание № 2110
i

Пло­ща­ди двух участ­ков поля на­хо­дят­ся в от­но­ше­нии 3 : 8. Ка­ко­ва пло­щадь (в гек­та­рах) мень­ше­го участ­ка поля, если общая пло­щадь двух участ­ков равна 682 га?



10
Задание № 2139
i

Ука­жи­те но­ме­ра тех функ­ций, ко­то­рые яв­ля­ют­ся не­чет­ны­ми.



11
Задание № 559
i

Ав­то­мо­биль про­ехал не­ко­то­рое рас­сто­я­ние, из­рас­хо­до­вав 15 л топ­ли­ва. Рас­ход топ­ли­ва при этом со­ста­вил 9 л на 100 км про­бе­га. Затем ав­то­мо­биль су­ще­ствен­но уве­ли­чил ско­рость, в ре­зуль­та­те чего рас­ход топ­ли­ва вырос до 12 л на 100 км. Сколь­ко лит­ров топ­ли­ва по­на­до­бит­ся ав­то­мо­би­лю, чтобы про­ехать такое же рас­сто­я­ние?


Ответ:

12
Задание № 1046
i

Для на­ча­ла каж­до­го из пред­ло­же­ний A−В под­бе­ри­те его окон­ча­ние 1−6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

НА­ЧА­ЛО ПРЕД­ЛО­ЖЕ­НИЯ

A)  Окруж­ность с цен­тром в точке (−8; −2) и ра­ди­у­сом 4 за­да­ет­ся урав­не­ни­ем:

Б)  Урав­не­ни­ем пря­мой, про­хо­дя­щей через точку (−8; 2) и па­рал­лель­ной пря­мой y= дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x, имеет вид:

В)  Гра­фик об­рат­ной про­пор­ци­о­наль­но­сти, про­хо­дя­щий через точку  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , за­да­ет­ся урав­не­ни­ем:

ОКОН­ЧА­НИЕ ПРЕД­ЛО­ЖЕ­НИЯ

1)  xy=2

2)   левая круг­лая скоб­ка x минус 8 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 2 пра­вая круг­лая скоб­ка в квад­ра­те =4

3)   минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x плюс y=4

4)   левая круг­лая скоб­ка x плюс 8 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те =16

5)  4xy плюс 1=0

6)   дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x плюс y=2

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.


Ответ:

13
Задание № 82
i

Най­ди­те пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка, мень­шая диа­го­наль ко­то­ро­го равна 10 ко­рень из 3 .


Ответ:

14

Най­ди­те сумму (в гра­ду­сах) наи­мень­ше­го по­ло­жи­тель­но­го и наи­боль­ше­го от­ри­ца­тель­но­го кор­ней урав­не­ния  синус 4x минус ко­рень из 3 ко­си­нус 2x=0.


Ответ:

15

Для на­ча­ла каж­до­го из пред­ло­же­ний под­бе­ри­те его окон­ча­ние 1-5 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

На­ча­ло

A)  Зна­че­ние вы­ра­же­ния 2 в сте­пе­ни левая круг­лая скоб­ка минус 8 пра­вая круг­лая скоб­ка :2 в сте­пе­ни 0 равно:

Б)  Зна­че­ние вы­ра­же­ния  минус 2 в сте­пе­ни левая круг­лая скоб­ка минус 11 пра­вая круг­лая скоб­ка умно­жить на 8 равно:

В)  Зна­че­ние вы­ра­же­ния 20 в сте­пе­ни 4 : левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка в сте­пе­ни 4 равно:

Окон­ча­ние

1)  256

2)  −256

3)   минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 256 конец дроби

4)   дробь: чис­ли­тель: 1, зна­ме­на­тель: 256 конец дроби

5)  32

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.


Ответ:

16

Для на­ча­ла каж­до­го из пред­ло­же­ний А  — В под­бе­ри­те его окон­ча­ние 1  — 6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

На­ча­ло пред­ло­же­ния Окон­ча­ние пред­ло­же­ния

А)  Зна­че­ние вы­ра­же­ния 5 синус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби плюс 5 ко­си­нус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби равно ...

Б)  Зна­че­ние вы­ра­же­ния 10 ко­си­нус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби равно ...

В)  Зна­че­ние вы­ра­же­ния 8 синус в квад­ра­те дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби минус 4 равно ...

1)  4 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та

2)  4 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

3)   минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

4)  2,5

5)  4 плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

6)  5

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.


Ответ:

17
Задание № 774
i

Три числа со­став­ля­ют гео­мет­ри­че­скую про­грес­сию, в ко­то­рой q боль­ше 1. Если вто­рой член про­грес­сии умень­шить на 12, то по­лу­чен­ные три числа в том же по­ряд­ке опять со­ста­вят гео­мет­ри­че­скую про­грес­сию. Если тре­тий член новой про­грес­сии умень­шить на 49, то по­лу­чен­ные числа со­ста­вят ариф­ме­ти­че­скую про­грес­сию. Най­ди­те сумму ис­ход­ных чисел.


Ответ:

18
Задание № 1924
i

На ко­ор­ди­нат­ной плос­ко­сти дана точка A(2; 4). Для на­ча­ла каж­до­го из пред­ло­же­ний А−В под­бе­ри­те его окон­ча­ние 1–6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

На­ча­ло пред­ло­же­нияОкон­ча­ние пред­ло­же­ния

A)  Если точка В сим­мет­рич­на точке А от­но­си­тель­но оси ор­ди­нат,

то рас­сто­я­ние между точ­ка­ми А и В равно ...

Б)  Если точка С сим­мет­рич­на точке А от­но­си­тель­но пря­мой у  =  1,

то рас­сто­я­ние между точ­ка­ми А и С равно ...

B)  Если точка N сим­мет­рич­на точке А от­но­си­тель­но точки D(−1; −1),

то рас­сто­я­ние между точ­ка­ми А и N равно ...

1)  8

2)  2 ко­рень из: на­ча­ло ар­гу­мен­та: 34 конец ар­гу­мен­та

3)  2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та

4)  6

5)   ко­рень из: на­ча­ло ар­гу­мен­та: 34 конец ар­гу­мен­та

6)  4

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.


Ответ:

19
Задание № 1110
i

В па­рал­ле­ло­грам­ме с ост­рым углом 45° точка пе­ре­се­ния диа­го­на­лей уда­ле­на от пря­мых, со­дер­жа­щих не­рав­ные сто­ро­ны, на рас­сто­я­ния  ко­рень из 2 и 5. Най­ди­те пло­щадь па­рал­ле­ло­грам­ма.


Ответ:

20

Най­ди­те про­из­ве­де­ние наи­боль­ше­го ре­ше­ния на ко­ли­че­ство ре­ше­ний урав­не­ния |x в квад­ра­те минус 4|x| минус 1|=0,5 в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка .


Ответ:

21
Задание № 1178
i

Най­ди­те ко­ли­че­ство целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: левая круг­лая скоб­ка 2 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та минус 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус 30 пра­вая круг­лая скоб­ка x в сте­пе­ни 4 , зна­ме­на­тель: |x| минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец дроби \geqslant0.


Ответ:

22
Задание № 1205
i

Най­ди­те про­из­ве­де­ние кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 5x плюс 2 конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: 7x плюс 5 конец ар­гу­мен­та .


Ответ:

23
Задание № 358
i

В рав­но­бо­кой тра­пе­ции боль­шее ос­но­ва­ние вдвое боль­ше каж­дой из осталь­ных сто­рон и лежит в плос­ко­сти α. Бо­ко­вая сто­ро­на об­ра­зу­ет с плос­ко­стью α угол, синус ко­то­ро­го равен  дробь: чис­ли­тель: 4 ко­рень из 3 , зна­ме­на­тель: 15 конец дроби . Най­ди­те 45sinβ, где β — угол между диа­го­на­лью тра­пе­ции и плос­ко­стью α.


Ответ:

24
Задание № 419
i

Ко­ли­че­ство целых ре­ше­ний не­ра­вен­ства 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 8 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 27 минус x пра­вая круг­лая скоб­ка боль­ше 22 равно ...


Ответ:

25
Задание № 447
i

Най­ди­те сумму целых зна­че­ний x, при­над­ле­жа­щих об­ла­сти опре­де­ле­ния функ­ции

y= ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 15 плюс 2x минус x в квад­ра­те пра­вая круг­лая скоб­ка .


Ответ:

26
Задание № 1896
i

Пусть A= ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: ко­рень из: на­ча­ло ар­гу­мен­та: 22 минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 20 конец ар­гу­мен­та минус ко­рень 6 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та конец ар­гу­мен­та . Най­ди­те зна­че­ние вы­ра­же­ния A12.


Ответ:

27
Задание № 2125
i

Най­ди­те зна­че­ние вы­ра­же­ния  ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка дробь: чис­ли­тель: 64, зна­ме­на­тель: b конец дроби пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка 16 a пра­вая круг­лая скоб­ка , если  ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка ab пра­вая круг­лая скоб­ка = 24.


Ответ:

28
Задание № 1210
i

Если x_1 и x_2  — корни урав­не­ния 7 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =28 плюс 6 в сте­пе­ни x минус 4 умно­жить на 3 в сте­пе­ни x , то зна­че­ние 3 в сте­пе­ни левая круг­лая скоб­ка x_1 плюс x_2 пра­вая круг­лая скоб­ка равно ... .


Ответ:

29
Задание № 1904
i

От­ре­зок BD яв­ля­ет­ся бис­сек­три­сой тре­уголь­ни­ка АВС, в ко­то­ром  дробь: чис­ли­тель: BC, зна­ме­на­тель: AB конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби и  дробь: чис­ли­тель: BC, зна­ме­на­тель: AC конец дроби = дробь: чис­ли­тель: 5, зна­ме­на­тель: 12 конец дроби . По от­рез­ку из точек В и D од­но­вре­мен­но нав­стре­чу друг другу с по­сто­ян­ны­ми и не­рав­ны­ми ско­ро­стя­ми на­ча­ли дви­же­ние два тела, ко­то­рые встре­ти­лись в точке пе­ре­се­че­ния бис­сек­трис тре­уголь­ни­ка АВС и про­дол­жи­ли дви­же­ние, не меняя на­прав­ле­ния и ско­ро­сти. Пер­вое тело до­стиг­ло точки D на 1 ми­ну­ту 14 се­кунд рань­ше, чем вто­рое до­стиг­ло точки В. За сколь­ко се­кунд вто­рое тело про­шло весь путь от точки D до точки В?


Ответ:

30
Задание № 2034
i

Дан куб ABCDA1B1C1D1 с дли­ной ребра, рав­ной 88. На реб­рах AD и AA1 взяты со­от­вет­ствен­но точки М и N так, что  дробь: чис­ли­тель: AM, зна­ме­на­тель: MD конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ,  дробь: чис­ли­тель: AN, зна­ме­на­тель: AA_1 конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби . Через точки M, N, B1 про­ве­де­на плос­кость. Най­ди­те рас­сто­я­ние d от точки D до этой плос­ко­сти. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния d2.


Ответ:
Завершить работу, свериться с ответами, увидеть решения.